LoomOS Core Modules
The core modules of LoomOS provide the foundational infrastructure for distributed AI operations. This comprehensive guide covers the four primary core modules: LoomDB for event sourcing and audit, Scheduler for resource orchestration, Security for access control and compliance, and Marketplace for cost optimization.LoomDB - Event Sourcing & Audit System
LoomDB is a high-performance event sourcing system designed specifically for AI workload auditing, compliance, and operational intelligence. It provides immutable event storage, real-time streaming, and comprehensive audit trails for all system operations.Architecture & Design Principles
LoomDB follows an event sourcing architecture with the following key principles:- Immutability: All events are append-only and immutable once written
- Temporal Ordering: Events maintain strict temporal ordering for causality
- Partitioning: Horizontal partitioning for scale and performance
- Streaming: Real-time event streaming for immediate processing
- Durability: Multi-replica persistence with configurable consistency levels
Core Components
Event Store
The event store is the heart of LoomDB, providing:Copy
from core.loomdb import (
LoomDB, EventType, AuditContext, EventStore,
PartitionStrategy, ConsistencyLevel, RetentionPolicy
)
# Configure event store with production settings
event_store_config = {
"partition_strategy": PartitionStrategy.TIME_BASED,
"partition_size_hours": 24,
"replication_factor": 3,
"consistency_level": ConsistencyLevel.QUORUM,
"compression": "lz4",
"encryption_at_rest": True
}
# Initialize LoomDB with custom configuration
db = LoomDB(
connection_string="postgresql://user:pass@localhost:5432/loomdb",
event_store_config=event_store_config,
retention_policy=RetentionPolicy(
default_retention_days=2555, # 7 years
compliance_retention_days=3650, # 10 years for regulated data
archive_after_days=365,
compress_after_days=90
)
)
await db.initialize()
Event Types & Schema
LoomDB supports comprehensive event typing for AI workflows:Copy
from core.loomdb import EventType, EventSchema, SchemaVersion
# Core AI lifecycle events
class AIEventType(EventType):
# Data events
DATA_INGESTION_START = "data.ingestion.start"
DATA_INGESTION_COMPLETE = "data.ingestion.complete"
DATA_VALIDATION_START = "data.validation.start"
DATA_VALIDATION_COMPLETE = "data.validation.complete"
# Training events
MODEL_TRAINING_START = "model.training.start"
MODEL_TRAINING_CHECKPOINT = "model.training.checkpoint"
MODEL_TRAINING_COMPLETE = "model.training.complete"
MODEL_TRAINING_FAILED = "model.training.failed"
# Evaluation events
MODEL_EVALUATION_START = "model.evaluation.start"
MODEL_EVALUATION_COMPLETE = "model.evaluation.complete"
# Deployment events
MODEL_DEPLOYMENT_START = "model.deployment.start"
MODEL_DEPLOYMENT_COMPLETE = "model.deployment.complete"
MODEL_INFERENCE_REQUEST = "model.inference.request"
# Security events
ACCESS_GRANTED = "security.access.granted"
ACCESS_DENIED = "security.access.denied"
PRIVILEGE_ESCALATION = "security.privilege.escalation"
# Compliance events
DATA_ACCESS_AUDIT = "compliance.data.access"
MODEL_LINEAGE_TRACE = "compliance.model.lineage"
RETENTION_POLICY_APPLIED = "compliance.retention.applied"
# Define event schemas with validation
training_start_schema = EventSchema(
version=SchemaVersion("1.2.0"),
required_fields=[
"model_name", "dataset_id", "hyperparameters",
"hardware_config", "expected_duration_hours"
],
optional_fields=[
"experiment_id", "parent_model_id", "tags",
"compliance_flags", "cost_center"
],
validation_rules={
"model_name": {"type": "string", "max_length": 256},
"dataset_id": {"type": "uuid"},
"hyperparameters": {"type": "object"},
"hardware_config": {
"type": "object",
"required": ["gpu_count", "node_count", "memory_gb"]
}
}
)
# Register schema
await db.register_event_schema(
event_type=AIEventType.MODEL_TRAINING_START,
schema=training_start_schema
)
Advanced Event Logging
Copy
from core.loomdb import (
AuditContext, ComplianceLevel, EventBatch,
EventMetadata, CostTracking, SecurityContext
)
# Create comprehensive audit context
audit_context = AuditContext(
user_id="data_scientist_456",
session_id="sess_abc123",
request_id="req_xyz789",
source_ip="10.0.1.50",
user_agent="LoomOS-SDK/1.2.3",
compliance_level=ComplianceLevel.SOC2_TYPE2,
cost_center="ml_research_team",
project_id="healthcare_nlp_2024"
)
# Enhanced security context for sensitive operations
security_context = SecurityContext(
authentication_method="oauth2_jwt",
authorization_roles=["data_scientist", "healthcare_team"],
access_level="confidential",
data_classification="phi", # Protected Health Information
geographic_restriction="us_only"
)
# Comprehensive training start event
training_start_data = {
"model_name": "healthcare_bert_v3",
"model_architecture": "transformer",
"dataset_id": "healthcare_corpus_2024",
"dataset_size_records": 2_500_000,
"dataset_size_gb": 47.3,
"hyperparameters": {
"learning_rate": 2e-5,
"batch_size": 32,
"num_epochs": 10,
"warmup_steps": 1000,
"weight_decay": 0.01,
"optimizer": "adamw",
"scheduler": "cosine_with_restarts"
},
"hardware_config": {
"node_count": 4,
"gpu_per_node": 8,
"gpu_type": "A100",
"total_gpu_memory_gb": 320,
"interconnect": "nvlink",
"storage_type": "nvme_ssd",
"estimated_cost_per_hour": 45.60
},
"compliance_metadata": {
"data_retention_years": 10,
"phi_data_present": True,
"consent_forms_verified": True,
"irb_approval_number": "IRB-2024-001"
},
"experiment_config": {
"experiment_id": "exp_healthcare_bert_v3_001",
"hypothesis": "Fine-tuning on healthcare data improves medical NER",
"success_criteria": "F1 score > 0.92 on held-out test set",
"expected_duration_hours": 16,
"checkpoint_frequency_minutes": 30
}
}
# Log event with full context
await db.log_event(
event_type=AIEventType.MODEL_TRAINING_START,
data=training_start_data,
context=audit_context,
security_context=security_context,
metadata=EventMetadata(
correlation_id="train_healthcare_bert_v3",
causation_id="data_validation_complete_xyz",
tags=["healthcare", "nlp", "bert", "phi_data"],
priority="high",
retention_override_days=3650 # 10 years for healthcare data
)
)
Batch Event Processing
For high-throughput scenarios, LoomDB supports efficient batch processing:Copy
from core.loomdb import EventBatch, BatchConfig
# Configure batch processing
batch_config = BatchConfig(
max_batch_size=1000,
max_batch_wait_ms=5000,
compression_enabled=True,
duplicate_detection=True,
async_processing=True
)
# Create event batch
batch = EventBatch(config=batch_config)
# Add multiple events to batch
for i in range(1000):
checkpoint_event = {
"epoch": i // 100,
"step": i,
"loss": 0.5 - (i * 0.0001),
"accuracy": 0.7 + (i * 0.0002),
"learning_rate": 2e-5 * (0.999 ** i),
"gpu_memory_used_gb": 28.4 + (i * 0.001),
"batch_processing_time_ms": 150 + (i % 50)
}
await batch.add_event(
event_type=AIEventType.MODEL_TRAINING_CHECKPOINT,
data=checkpoint_event,
context=audit_context
)
# Submit batch for processing
batch_result = await db.submit_batch(batch)
print(f"Processed {batch_result.events_processed} events in {batch_result.processing_time_ms}ms")
Event Querying & Analytics
Copy
from core.loomdb import (
EventQuery, QueryFilter, TimeRange, AggregationType,
AnalyticsEngine, ComplianceQuery
)
# Complex event querying
query = EventQuery(
event_types=[
AIEventType.MODEL_TRAINING_START,
AIEventType.MODEL_TRAINING_COMPLETE,
AIEventType.MODEL_TRAINING_FAILED
],
time_range=TimeRange(
start=datetime(2024, 1, 1),
end=datetime(2024, 12, 31)
),
filters=[
QueryFilter("tags", "contains", "healthcare"),
QueryFilter("data.hardware_config.gpu_count", ">=", 4),
QueryFilter("context.compliance_level", "=", ComplianceLevel.SOC2_TYPE2)
],
order_by="timestamp",
limit=10000,
include_metadata=True
)
# Execute query
results = await db.query_events(query)
# Analytics on query results
analytics = AnalyticsEngine(db)
# Calculate training success rates
success_rate_analysis = await analytics.calculate_metrics(
metric_type=AggregationType.SUCCESS_RATE,
group_by=["data.model_architecture", "data.dataset_id"],
time_granularity="monthly"
)
# Cost analysis
cost_analysis = await analytics.calculate_cost_metrics(
group_by=["context.cost_center", "data.hardware_config.gpu_type"],
include_projections=True,
projection_months=6
)
# Compliance reporting
compliance_query = ComplianceQuery(
compliance_level=ComplianceLevel.SOC2_TYPE2,
report_type="access_audit",
time_range=TimeRange.last_quarter(),
include_user_actions=True,
include_data_lineage=True
)
compliance_report = await db.generate_compliance_report(compliance_query)
Real-time Event Streaming
Copy
from core.loomdb import EventStream, StreamConfig, EventFilter
# Configure event streaming
stream_config = StreamConfig(
buffer_size=10000,
batch_size=100,
flush_interval_ms=1000,
enable_checkpointing=True,
checkpoint_interval_ms=30000
)
# Create event stream with filters
stream = EventStream(
config=stream_config,
filters=[
EventFilter(event_types=[AIEventType.MODEL_TRAINING_FAILED]),
EventFilter(tags__contains="production"),
EventFilter(priority="high")
]
)
# Process events in real-time
async for event_batch in stream.subscribe():
for event in event_batch:
if event.event_type == AIEventType.MODEL_TRAINING_FAILED:
# Trigger immediate alert for production failures
await alert_system.send_alert(
severity="critical",
message=f"Production model training failed: {event.data['model_name']}",
event_id=event.event_id,
correlation_id=event.metadata.correlation_id
)
# Trigger automatic retry if configured
if event.data.get("auto_retry", False):
await scheduler.retry_job(event.data["job_id"])
Scheduler - Distributed Job Orchestration
The LoomOS Scheduler provides sophisticated distributed job orchestration with advanced resource management, intelligent placement, and automatic scaling capabilities.Scheduler Architecture
The scheduler operates as a distributed system with the following components:- Master Scheduler: Central coordination and decision making
- Worker Schedulers: Local resource management and job execution
- Resource Manager: Global resource tracking and allocation
- Policy Engine: Pluggable scheduling policies and constraints
- Autoscaler: Dynamic cluster scaling based on demand
Core Scheduling Concepts
Job Specifications
Copy
from core.scheduler import (
Scheduler, JobSpec, ResourceRequirements, JobDependency,
SchedulingPolicy, PlacementConstraint, RetryPolicy,
CheckpointConfig, MonitoringConfig
)
# Advanced job specification
job_spec = JobSpec(
# Basic job information
name="large_language_model_training",
description="Training GPT-style model on proprietary dataset",
job_type="distributed_training",
algorithm="weave_distributed",
# Container and execution configuration
container_image="loomos/pytorch-training:v2.1.0",
command=["python", "train_llm.py"],
args=["--config", "/workspace/config.yaml"],
working_directory="/workspace",
# Resource requirements with topology awareness
resources=ResourceRequirements(
# Compute resources
cpu_cores=64,
memory_gb=512,
gpu_count=8,
gpu_type="H100",
gpu_memory_gb=80,
# Storage requirements
local_storage_gb=2000,
shared_storage_gb=10000,
storage_type="nvme",
io_bandwidth_gbps=10,
# Network requirements
network_bandwidth_gbps=100,
low_latency_required=True,
infiniband_required=True,
# Topology constraints
numa_topology="interleaved",
cpu_affinity="performance",
gpu_topology="nvlink_connected"
),
# Scheduling and placement
scheduling_policy=SchedulingPolicy.GANG_SCHEDULING,
placement_constraints=[
PlacementConstraint.SAME_RACK, # All nodes in same rack
PlacementConstraint.GPU_AFFINITY, # Optimize GPU placement
PlacementConstraint.AVOID_PREEMPTION # Avoid preemptible nodes
],
# Priority and preemption
priority=90, # High priority (0-100 scale)
preemptible=False,
can_preempt_lower_priority=True,
# Execution constraints
max_runtime_hours=168, # 7 days maximum
timeout_behavior="checkpoint_and_terminate",
# Retry and fault tolerance
retry_policy=RetryPolicy(
max_retries=3,
retry_delay_seconds=300,
exponential_backoff=True,
retry_on_node_failure=True,
retry_on_resource_exhaustion=False
),
# Dependencies and workflow
dependencies=[
JobDependency(
job_name="data_preprocessing_job",
dependency_type="completion",
timeout_hours=24
),
JobDependency(
job_name="model_validation_job",
dependency_type="success",
artifacts_required=["validated_dataset.parquet"]
)
],
# Environment configuration
environment_variables={
"CUDA_VISIBLE_DEVICES": "0,1,2,3,4,5,6,7",
"NCCL_DEBUG": "INFO",
"NCCL_IB_DISABLE": "0",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
"TRANSFORMERS_CACHE": "/workspace/cache",
"WANDB_PROJECT": "llm_training_2024"
},
# Checkpoint configuration
checkpoint_config=CheckpointConfig(
enabled=True,
interval_minutes=30,
max_checkpoints=20,
storage_backend="s3://model-checkpoints/llm-training/",
async_upload=True,
compression_enabled=True,
encryption_enabled=True
),
# Monitoring and alerting
monitoring_config=MonitoringConfig(
metrics_collection_interval_seconds=30,
log_level="INFO",
custom_metrics=["gpu_utilization", "memory_usage", "loss_value"],
alert_thresholds={
"gpu_utilization_percent": {"min": 80, "max": 95},
"memory_usage_percent": {"max": 90},
"loss_divergence_threshold": 10.0
},
notification_channels=[
"slack://ml-team-alerts",
"email://[email protected]",
"pagerduty://ml-oncall"
]
),
# Tags and metadata
tags=["llm", "production", "high_priority", "multi_node"],
metadata={
"team": "ml_research",
"project": "next_gen_llm",
"cost_center": "research_and_development",
"compliance_level": "confidential"
}
)
Advanced Resource Management
Copy
from core.scheduler import (
ResourceManager, ResourcePool, ResourceAllocation,
ResourcePolicy, AutoScalingConfig, NodeSelector
)
# Configure resource manager
resource_manager = ResourceManager()
# Define resource pools for different workload types
training_pool = ResourcePool(
name="gpu_training_pool",
node_selector=NodeSelector(
labels={"node-type": "gpu-training", "gpu-generation": "h100"},
taints_tolerated=["training-workload:NoSchedule"]
),
resource_limits={
"cpu_cores": 1000,
"memory_gb": 8000,
"gpu_count": 64,
"storage_gb": 100000
},
resource_allocation_policy=ResourcePolicy.FAIR_SHARE,
overcommit_ratios={
"cpu": 1.5, # Allow 50% CPU overcommit
"memory": 1.1, # Allow 10% memory overcommit
"storage": 2.0 # Allow 100% storage overcommit
}
)
inference_pool = ResourcePool(
name="inference_pool",
node_selector=NodeSelector(
labels={"node-type": "inference", "instance-type": "optimized"},
preferred_zones=["us-west-2a", "us-west-2b"]
),
resource_limits={
"cpu_cores": 500,
"memory_gb": 2000,
"gpu_count": 32
},
autoscaling_config=AutoScalingConfig(
min_nodes=5,
max_nodes=50,
scale_up_threshold=0.8,
scale_down_threshold=0.3,
scale_up_delay_seconds=300,
scale_down_delay_seconds=900
)
)
# Register resource pools
await resource_manager.register_pool(training_pool)
await resource_manager.register_pool(inference_pool)
Intelligent Job Scheduling
Copy
from core.scheduler import (
SchedulingAlgorithm, JobQueue, SchedulingDecision,
ResourceOptimizer, PlacementOptimizer
)
# Initialize scheduler with advanced algorithms
scheduler = Scheduler(
scheduling_algorithm=SchedulingAlgorithm.MULTI_OBJECTIVE_OPTIMIZATION,
optimization_objectives=[
"minimize_makespan", # Minimize total completion time
"maximize_utilization", # Maximize resource utilization
"minimize_energy_cost", # Optimize for energy efficiency
"respect_sla_deadlines" # Meet SLA commitments
],
scheduling_interval_seconds=30,
resource_manager=resource_manager
)
# Submit job with custom scheduling preferences
scheduling_preferences = {
"preferred_nodes": ["gpu-node-001", "gpu-node-002"],
"avoid_nodes": ["gpu-node-maintenance-*"],
"locality_preference": "data_source_proximity",
"cost_optimization": "spot_instances_preferred",
"deadline": datetime.now() + timedelta(hours=48)
}
job_handle = await scheduler.submit_job(
job_spec=job_spec,
scheduling_preferences=scheduling_preferences,
dry_run=False # Set to True for scheduling simulation
)
print(f"Job submitted with ID: {job_handle.job_id}")
print(f"Estimated start time: {job_handle.estimated_start_time}")
print(f"Estimated completion time: {job_handle.estimated_completion_time}")
print(f"Estimated cost: ${job_handle.estimated_cost:.2f}")
Job Monitoring & Management
Copy
from core.scheduler import JobMonitor, JobAction, JobPhase
# Create job monitor for real-time updates
monitor = JobMonitor(scheduler)
# Stream job updates
async for update in monitor.stream_job_updates(job_handle.job_id):
print(f"Job Phase: {update.phase}")
print(f"Progress: {update.progress_percent:.1f}%")
print(f"Resource Utilization: CPU {update.cpu_utilization:.1f}%, GPU {update.gpu_utilization:.1f}%")
print(f"Estimated Time Remaining: {update.eta}")
# Handle different job phases
if update.phase == JobPhase.QUEUED:
print(f"Position in queue: {update.queue_position}")
elif update.phase == JobPhase.RUNNING:
# Log detailed metrics
metrics = await monitor.get_detailed_metrics(job_handle.job_id)
await db.log_event(
event_type=AIEventType.MODEL_TRAINING_CHECKPOINT,
data={
"job_id": job_handle.job_id,
"metrics": metrics,
"timestamp": update.timestamp
},
context=audit_context
)
elif update.phase == JobPhase.COMPLETED:
# Handle successful completion
results = await monitor.get_job_results(job_handle.job_id)
print(f"Job completed successfully: {results}")
# Trigger post-processing workflow
await scheduler.submit_job(create_postprocessing_job(results))
elif update.phase == JobPhase.FAILED:
# Handle job failure
failure_info = await monitor.get_failure_info(job_handle.job_id)
# Automatic retry logic
if failure_info.retryable and job_handle.retry_count < 3:
print("Retrying failed job...")
retry_handle = await scheduler.retry_job(
job_handle.job_id,
retry_delay_seconds=600
)
else:
# Send failure notification
await alert_system.send_alert(
severity="high",
message=f"Job {job_handle.job_id} failed permanently",
details=failure_info
)
# Job control operations
async def manage_job_lifecycle():
# Pause job (for maintenance or resource reallocation)
await scheduler.pause_job(job_handle.job_id, reason="Scheduled maintenance")
# Resume job
await scheduler.resume_job(job_handle.job_id)
# Scale job resources dynamically
await scheduler.scale_job_resources(
job_handle.job_id,
new_resources=ResourceRequirements(
cpu_cores=128, # Double CPU allocation
gpu_count=16 # Double GPU allocation
)
)
# Create checkpoint
checkpoint_id = await scheduler.create_checkpoint(job_handle.job_id)
print(f"Checkpoint created: {checkpoint_id}")
# Graceful job termination
await scheduler.terminate_job(
job_handle.job_id,
reason="User requested termination",
save_checkpoint=True,
cleanup_resources=True
)
Security - Authentication, Authorization & Compliance
The LoomOS Security module provides comprehensive security controls including authentication, authorization, encryption, and compliance management for enterprise AI workloads.Authentication & Identity Management
Copy
from core.security import (
AuthenticationManager, IdentityProvider, AuthConfig,
MultiFactor, CertificateManager, TokenManager
)
# Configure authentication with multiple providers
auth_config = AuthConfig(
primary_provider=IdentityProvider.OAUTH2,
fallback_providers=[IdentityProvider.LDAP, IdentityProvider.LOCAL],
# OAuth2 configuration
oauth2_config={
"issuer_url": "https://auth.company.com/realms/loomos",
"client_id": "loomos-platform",
"client_secret": "${OAUTH2_CLIENT_SECRET}",
"scopes": ["openid", "profile", "email", "groups"],
"token_validation": "jwks",
"token_refresh_enabled": True
},
# Multi-factor authentication
mfa_config={
"enabled": True,
"required_for_admin": True,
"methods": ["totp", "webauthn", "sms"],
"grace_period_hours": 4
},
# Session management
session_config={
"timeout_minutes": 480, # 8 hours
"sliding_expiration": True,
"concurrent_sessions_limit": 3,
"secure_cookies": True
}
)
auth_manager = AuthenticationManager(config=auth_config)
# Advanced authentication flow
async def authenticate_user(credentials):
# Primary authentication
auth_result = await auth_manager.authenticate(credentials)
if auth_result.requires_mfa:
# Multi-factor authentication challenge
mfa_challenge = await auth_manager.initiate_mfa(
user_id=auth_result.user_id,
method="totp"
)
# Wait for MFA response
mfa_token = await get_mfa_token_from_user()
mfa_result = await auth_manager.verify_mfa(
challenge_id=mfa_challenge.challenge_id,
token=mfa_token
)
if not mfa_result.success:
raise AuthenticationError("MFA verification failed")
# Generate session token
session_token = await auth_manager.create_session(
user_id=auth_result.user_id,
roles=auth_result.roles,
permissions=auth_result.permissions,
metadata={
"login_time": datetime.utcnow(),
"ip_address": credentials.source_ip,
"user_agent": credentials.user_agent
}
)
return session_token
Role-Based Access Control (RBAC)
Copy
from core.security import (
RBACManager, Role, Permission, PolicyEngine,
ResourceAccess, AccessDecision, AuditLogger
)
# Define comprehensive permission system
class LoomOSPermissions:
# Job management permissions
JOBS_CREATE = Permission("jobs:create", "Create new training jobs")
JOBS_READ = Permission("jobs:read", "View job status and details")
JOBS_UPDATE = Permission("jobs:update", "Modify job parameters")
JOBS_DELETE = Permission("jobs:delete", "Cancel or delete jobs")
JOBS_ADMIN = Permission("jobs:admin", "Full job management access")
# Model management permissions
MODELS_DEPLOY = Permission("models:deploy", "Deploy models to production")
MODELS_READ = Permission("models:read", "Access model artifacts")
MODELS_UPDATE = Permission("models:update", "Update model metadata")
MODELS_DELETE = Permission("models:delete", "Delete model artifacts")
# Data access permissions
DATA_READ_PUBLIC = Permission("data:read:public", "Access public datasets")
DATA_READ_INTERNAL = Permission("data:read:internal", "Access internal datasets")
DATA_READ_CONFIDENTIAL = Permission("data:read:confidential", "Access confidential data")
DATA_WRITE = Permission("data:write", "Upload or modify datasets")
# Cluster management permissions
CLUSTER_READ = Permission("cluster:read", "View cluster status")
CLUSTER_ADMIN = Permission("cluster:admin", "Administer cluster resources")
# Security permissions
SECURITY_AUDIT = Permission("security:audit", "Access security logs")
SECURITY_ADMIN = Permission("security:admin", "Manage security policies")
# Define roles with hierarchical permissions
data_scientist_role = Role(
name="data_scientist",
description="Data scientists and ML researchers",
permissions=[
LoomOSPermissions.JOBS_CREATE,
LoomOSPermissions.JOBS_READ,
LoomOSPermissions.JOBS_UPDATE,
LoomOSPermissions.MODELS_READ,
LoomOSPermissions.DATA_READ_PUBLIC,
LoomOSPermissions.DATA_READ_INTERNAL,
LoomOSPermissions.CLUSTER_READ
],
constraints={
"max_concurrent_jobs": 10,
"max_gpu_hours_per_month": 1000,
"allowed_datasets": ["public", "internal"],
"cost_limit_per_month": 5000
}
)
ml_engineer_role = Role(
name="ml_engineer",
description="ML engineers and platform users",
permissions=[
LoomOSPermissions.JOBS_CREATE,
LoomOSPermissions.JOBS_READ,
LoomOSPermissions.JOBS_UPDATE,
LoomOSPermissions.JOBS_DELETE,
LoomOSPermissions.MODELS_DEPLOY,
LoomOSPermissions.MODELS_READ,
LoomOSPermissions.MODELS_UPDATE,
LoomOSPermissions.DATA_READ_PUBLIC,
LoomOSPermissions.DATA_READ_INTERNAL,
LoomOSPermissions.DATA_WRITE,
LoomOSPermissions.CLUSTER_READ
],
constraints={
"max_concurrent_jobs": 25,
"max_gpu_hours_per_month": 2500,
"allowed_environments": ["development", "staging", "production"]
}
)
platform_admin_role = Role(
name="platform_admin",
description="Platform administrators",
permissions="*", # All permissions
constraints={} # No constraints for admins
)
# Initialize RBAC system
rbac = RBACManager()
await rbac.register_roles([data_scientist_role, ml_engineer_role, platform_admin_role])
# Advanced access control with context
async def check_access(user_id: str, resource: str, action: str, context: dict = None):
"""
Check if user has access to perform action on resource with given context
"""
access_request = ResourceAccess(
user_id=user_id,
resource=resource,
action=action,
context=context or {}
)
# Evaluate access decision
decision = await rbac.evaluate_access(access_request)
# Log access attempt for audit
await audit_logger.log_access_attempt(
user_id=user_id,
resource=resource,
action=action,
decision=decision.allowed,
reason=decision.reason,
context=context
)
if not decision.allowed:
raise AccessDeniedError(f"Access denied: {decision.reason}")
return decision
# Dynamic permission evaluation
async def submit_job_with_rbac(user_id: str, job_spec: JobSpec):
# Check basic job creation permission
await check_access(user_id, "jobs", "create")
# Check resource limits based on user role
user_roles = await rbac.get_user_roles(user_id)
resource_limits = await rbac.get_resource_limits(user_roles)
# Validate job against user constraints
if job_spec.resources.gpu_count > resource_limits.max_gpus_per_job:
raise AccessDeniedError(f"GPU request exceeds limit: {resource_limits.max_gpus_per_job}")
# Check cost limits
estimated_cost = await cost_calculator.estimate_job_cost(job_spec)
monthly_usage = await cost_tracker.get_monthly_usage(user_id)
if monthly_usage + estimated_cost > resource_limits.monthly_cost_limit:
raise AccessDeniedError(f"Job would exceed monthly cost limit: ${resource_limits.monthly_cost_limit}")
# Check data access permissions for datasets
for dataset in job_spec.datasets:
dataset_classification = await data_classifier.get_classification(dataset)
required_permission = f"data:read:{dataset_classification}"
await check_access(
user_id=user_id,
resource=f"dataset:{dataset}",
action="read",
context={"classification": dataset_classification}
)
# If all checks pass, submit the job
return await scheduler.submit_job(job_spec)
Encryption & Data Protection
Copy
from core.security import (
EncryptionManager, EncryptionConfig, KeyManager,
DataClassification, EncryptionAlgorithm
)
# Configure encryption for different data classifications
encryption_config = EncryptionConfig(
# Encryption at rest
at_rest_config={
"algorithm": EncryptionAlgorithm.AES_256_GCM,
"key_rotation_days": 90,
"key_derivation": "pbkdf2",
"compression_before_encryption": True
},
# Encryption in transit
in_transit_config={
"tls_version": "1.3",
"cipher_suites": ["TLS_AES_256_GCM_SHA384", "TLS_CHACHA20_POLY1305_SHA256"],
"certificate_validation": "strict",
"hsts_enabled": True
},
# Key management
key_management_config={
"key_store": "hsm", # Hardware Security Module
"key_escrow_enabled": True,
"key_backup_enabled": True,
"master_key_rotation_days": 365
}
)
encryption_manager = EncryptionManager(config=encryption_config)
# Data classification and encryption
async def encrypt_sensitive_data(data: bytes, classification: DataClassification):
"""Encrypt data based on its classification level"""
if classification == DataClassification.PUBLIC:
# Public data - no encryption required
return data
elif classification == DataClassification.INTERNAL:
# Internal data - standard encryption
encrypted_data = await encryption_manager.encrypt(
data=data,
algorithm=EncryptionAlgorithm.AES_256_GCM,
key_id="internal_data_key"
)
elif classification == DataClassification.CONFIDENTIAL:
# Confidential data - enhanced encryption
encrypted_data = await encryption_manager.encrypt(
data=data,
algorithm=EncryptionAlgorithm.AES_256_GCM,
key_id="confidential_data_key",
additional_entropy=True
)
elif classification == DataClassification.RESTRICTED:
# Restricted data - maximum security
encrypted_data = await encryption_manager.encrypt(
data=data,
algorithm=EncryptionAlgorithm.CHACHA20_POLY1305,
key_id="restricted_data_key",
additional_entropy=True,
require_hsm=True
)
return encrypted_data
# Secure model artifact storage
async def store_model_securely(model_data: bytes, model_metadata: dict):
"""Store model with appropriate encryption and access controls"""
# Classify model based on training data
data_classification = await classify_model_data(model_metadata)
# Encrypt model data
encrypted_model = await encrypt_sensitive_data(model_data, data_classification)
# Generate secure model ID
model_id = await generate_secure_id()
# Store with metadata
storage_metadata = {
**model_metadata,
"encryption_algorithm": "AES_256_GCM",
"data_classification": data_classification.value,
"storage_timestamp": datetime.utcnow().isoformat(),
"checksum": calculate_checksum(encrypted_model)
}
# Store in secure backend
await secure_storage.store(
key=f"models/{model_id}",
data=encrypted_model,
metadata=storage_metadata,
access_policy=generate_access_policy(data_classification)
)
return model_id
Marketplace - Cost Optimization & Provider Management
The LoomOS Marketplace provides intelligent cost optimization, provider comparison, and resource advisory services for AI workloads across different cloud providers and on-premises infrastructure.Cost Analysis & Optimization
Copy
from core.marketplace import (
CostOptimizer, CostAnalyzer, ProviderComparator,
PricingModel, ResourceAdvisor, CostForecast
)
# Initialize cost optimization system
cost_optimizer = CostOptimizer()
cost_analyzer = CostAnalyzer()
# Analyze current spending patterns
async def analyze_ai_workload_costs():
"""Comprehensive cost analysis for AI workloads"""
# Get historical cost data
cost_data = await cost_analyzer.get_historical_costs(
time_range=TimeRange.last_6_months(),
group_by=["provider", "instance_type", "workload_type", "team"],
include_projections=True
)
# Identify cost optimization opportunities
optimization_opportunities = await cost_optimizer.identify_opportunities(cost_data)
# Generate recommendations
recommendations = []
for opportunity in optimization_opportunities:
if opportunity.type == "instance_right_sizing":
# Recommend optimal instance types
optimal_instances = await cost_optimizer.recommend_instance_types(
workload_profile=opportunity.workload_profile,
performance_requirements=opportunity.performance_requirements,
cost_optimization_target=0.3 # Target 30% cost reduction
)
recommendations.append({
"type": "instance_optimization",
"current_cost": opportunity.current_monthly_cost,
"optimized_cost": sum(inst.monthly_cost for inst in optimal_instances),
"savings": opportunity.current_monthly_cost - sum(inst.monthly_cost for inst in optimal_instances),
"confidence": opportunity.confidence_score,
"recommendations": optimal_instances
})
elif opportunity.type == "spot_instance_usage":
# Recommend spot instance adoption
spot_analysis = await cost_optimizer.analyze_spot_feasibility(
workload_type=opportunity.workload_type,
fault_tolerance=opportunity.fault_tolerance,
deadline_flexibility=opportunity.deadline_flexibility
)
recommendations.append({
"type": "spot_instances",
"potential_savings": spot_analysis.potential_savings,
"interruption_risk": spot_analysis.interruption_risk,
"recommended_mix": spot_analysis.optimal_spot_ondemand_ratio
})
return recommendations
# Multi-provider cost comparison
async def compare_providers_for_workload(job_spec: JobSpec):
"""Compare costs across different cloud providers"""
providers = ["aws", "gcp", "azure", "on_premises"]
comparisons = []
for provider in providers:
provider_cost = await cost_analyzer.estimate_job_cost(
job_spec=job_spec,
provider=provider,
pricing_model=PricingModel.ON_DEMAND,
include_data_transfer=True,
include_storage_costs=True
)
# Get spot pricing if applicable
if job_spec.fault_tolerant:
spot_cost = await cost_analyzer.estimate_job_cost(
job_spec=job_spec,
provider=provider,
pricing_model=PricingModel.SPOT,
interruption_handling=True
)
provider_cost.spot_alternative = spot_cost
# Calculate total cost including data transfer
total_cost = provider_cost.compute_cost + provider_cost.storage_cost + provider_cost.network_cost
comparisons.append({
"provider": provider,
"total_cost": total_cost,
"compute_cost": provider_cost.compute_cost,
"storage_cost": provider_cost.storage_cost,
"network_cost": provider_cost.network_cost,
"estimated_runtime": provider_cost.estimated_runtime_hours,
"performance_score": provider_cost.performance_score,
"availability_score": provider_cost.availability_score,
"spot_savings": provider_cost.spot_alternative.savings_percent if provider_cost.spot_alternative else 0
})
# Rank providers by cost-effectiveness
ranked_providers = sorted(comparisons, key=lambda x: x["total_cost"] / x["performance_score"])
return ranked_providers
# Intelligent resource recommendations
resource_advisor = ResourceAdvisor()
async def get_resource_recommendations(workload_history: List[JobSpec]):
"""Generate intelligent resource recommendations based on workload history"""
# Analyze historical resource utilization
utilization_analysis = await resource_advisor.analyze_utilization_patterns(workload_history)
# Identify common patterns
patterns = await resource_advisor.identify_workload_patterns(
workload_history,
clustering_algorithm="k_means",
pattern_types=["resource_usage", "temporal", "performance"]
)
recommendations = []
for pattern in patterns:
# Generate resource optimization recommendations
if pattern.type == "over_provisioning":
recommendations.append({
"type": "reduce_resources",
"resource_type": pattern.resource_type,
"current_allocation": pattern.current_allocation,
"recommended_allocation": pattern.optimal_allocation,
"confidence": pattern.confidence_score,
"estimated_savings": pattern.cost_savings_per_month
})
elif pattern.type == "under_utilization":
recommendations.append({
"type": "consolidate_workloads",
"affected_jobs": pattern.job_ids,
"consolidation_strategy": pattern.recommended_strategy,
"resource_savings": pattern.resource_savings,
"performance_impact": pattern.performance_impact
})
elif pattern.type == "peak_usage":
# Recommend auto-scaling configuration
scaling_config = await resource_advisor.generate_autoscaling_config(
workload_pattern=pattern,
target_utilization=0.8,
scale_up_aggressiveness="moderate"
)
recommendations.append({
"type": "enable_autoscaling",
"scaling_config": scaling_config,
"estimated_savings": scaling_config.estimated_monthly_savings,
"performance_improvement": scaling_config.performance_benefit
})
return recommendations
# Cost forecasting and budgeting
async def generate_cost_forecast(team_id: str, forecast_months: int = 12):
"""Generate cost forecasts and budget recommendations"""
# Get historical spending data
historical_data = await cost_analyzer.get_team_spending(
team_id=team_id,
time_range=TimeRange.last_12_months()
)
# Analyze spending trends
trends = await cost_analyzer.analyze_spending_trends(
historical_data,
include_seasonality=True,
include_growth_patterns=True
)
# Generate forecast
forecast = await CostForecast.generate(
historical_data=historical_data,
trends=trends,
forecast_horizon_months=forecast_months,
confidence_intervals=[0.8, 0.95],
include_scenario_analysis=True
)
# Budget recommendations
budget_recommendations = await cost_optimizer.generate_budget_recommendations(
forecast=forecast,
cost_optimization_target=0.15, # Target 15% cost reduction
growth_allowance=0.25 # Allow 25% growth
)
return {
"forecast": forecast,
"budget_recommendations": budget_recommendations,
"optimization_opportunities": await cost_optimizer.identify_future_opportunities(forecast),
"risk_factors": forecast.risk_factors
}
Provider Integration & Management
Copy
from core.marketplace import (
ProviderManager, CloudProvider, ProviderConfig,
ResourceQuota, CostMonitor, ProviderHealthChecker
)
# Multi-cloud provider configuration
provider_configs = {
"aws": ProviderConfig(
provider_type=CloudProvider.AWS,
credentials={
"access_key_id": "${AWS_ACCESS_KEY_ID}",
"secret_access_key": "${AWS_SECRET_ACCESS_KEY}",
"region": "us-west-2"
},
resource_quotas=ResourceQuota(
max_instances=100,
max_vcpus=1000,
max_gpus=50,
max_storage_tb=100
),
cost_limits={
"daily_limit": 10000,
"monthly_limit": 250000,
"emergency_limit": 50000
}
),
"gcp": ProviderConfig(
provider_type=CloudProvider.GCP,
credentials={
"service_account_key": "${GCP_SERVICE_ACCOUNT_KEY}",
"project_id": "ai-workloads-prod",
"region": "us-central1"
},
resource_quotas=ResourceQuota(
max_instances=75,
max_vcpus=750,
max_gpus=40,
max_storage_tb=75
)
),
"azure": ProviderConfig(
provider_type=CloudProvider.AZURE,
credentials={
"tenant_id": "${AZURE_TENANT_ID}",
"client_id": "${AZURE_CLIENT_ID}",
"client_secret": "${AZURE_CLIENT_SECRET}",
"subscription_id": "${AZURE_SUBSCRIPTION_ID}"
},
resource_quotas=ResourceQuota(
max_instances=60,
max_vcpus=600,
max_gpus=30,
max_storage_tb=60
)
)
}
# Initialize provider manager
provider_manager = ProviderManager()
for provider_name, config in provider_configs.items():
await provider_manager.register_provider(provider_name, config)
# Intelligent provider selection
async def select_optimal_provider(job_spec: JobSpec, constraints: dict = None):
"""Select optimal provider based on job requirements and constraints"""
# Get available providers
available_providers = await provider_manager.get_available_providers()
# Filter providers based on constraints
if constraints:
available_providers = await provider_manager.filter_providers(
providers=available_providers,
constraints=constraints
)
provider_scores = []
for provider in available_providers:
# Calculate provider score based on multiple factors
cost_score = await cost_analyzer.calculate_cost_score(job_spec, provider)
performance_score = await provider_manager.get_performance_score(provider, job_spec)
availability_score = await provider_manager.get_availability_score(provider)
# Weighted composite score
composite_score = (
cost_score * 0.4 + # 40% weight on cost
performance_score * 0.3 + # 30% weight on performance
availability_score * 0.3 # 30% weight on availability
)
provider_scores.append({
"provider": provider,
"composite_score": composite_score,
"cost_score": cost_score,
"performance_score": performance_score,
"availability_score": availability_score,
"estimated_cost": await cost_analyzer.estimate_job_cost(job_spec, provider),
"estimated_completion_time": await provider_manager.estimate_completion_time(job_spec, provider)
})
# Return ranked providers
return sorted(provider_scores, key=lambda x: x["composite_score"], reverse=True)
Advanced Core Module Features
Inter-module Communication & Orchestration
Copy
from core.orchestration import ModuleOrchestrator, EventBus, MessageRouter
# Initialize module orchestration
orchestrator = ModuleOrchestrator()
event_bus = EventBus()
# Register core modules
await orchestrator.register_module("loomdb", db)
await orchestrator.register_module("scheduler", scheduler)
await orchestrator.register_module("security", rbac)
await orchestrator.register_module("marketplace", cost_optimizer)
# Set up event-driven communication
@event_bus.subscribe("job.submitted")
async def on_job_submitted(event):
# Log job submission to LoomDB
await db.log_event(
event_type=AIEventType.JOB_SUBMITTED,
data=event.data,
context=event.context
)
# Update cost tracking
await cost_optimizer.track_job_cost(event.data["job_id"])
# Check security policies
await rbac.validate_job_security(event.data["job_spec"])
@event_bus.subscribe("job.completed")
async def on_job_completed(event):
# Log completion
await db.log_event(
event_type=AIEventType.JOB_COMPLETED,
data=event.data,
context=event.context
)
# Calculate final costs
final_cost = await cost_optimizer.calculate_final_job_cost(event.data["job_id"])
# Update usage quotas
await rbac.update_usage_quotas(event.context.user_id, final_cost)
